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A Simple Algorithm for Population 
Classification
Peng Hu1,2, Ming-Hua Hsieh3, Ming-Jie Lei1,2,  Bin Cui4, Sung-Kay Chiu5 & Chi-Meng Tzeng1,2

A single-nucleotide polymorphism (SNP) is a variation in the DNA sequence that occurs when a single 
nucleotide in the genome differs across members of the same species. Variations in the DNA sequences 
of humans are associated with human diseases. This makes SNPs as a key to open up the door of 
personalized medicine. SNP(s) can also be used for human identification and forensic applications. 
Compared to short tandem repeat (STR) loci, SNPs have much lower statistical testing power for 
individual recognition due to the fact that there are only 3 possible genotypes for each SNP marker, 
but it may provide sufficient information to identify the population to which a certain samples may 
belong. In this report, using eight SNP markers for 641 samples, we performed a standard statistical 
classification procedure and found that 86% of the samples could be classified accurately under a 
two-population model. This study suggests the potential use of SNP(s) in population classification 
with a small number (n ≤ 8) of genetic markers for forensic screening, biodiversity and disaster victim 
controlling.

Since the single nucleotide polymorphisms (SNPs) are genetic variations which determine the difference across 
members of the same species, the SNPs can be used to identify the correct source population of an individual. In 
recent years there have been several publications about the application of SNP technology in the forensic, human 
identification and population classification1–4. Such as Nina Zhou et al.1, using a ranking measure, i.e., a modified 
t-test or F-statistics, combined with the support vector machine (SVM) classifier, they had found that using on 
average 64 SNPs could obtain 82.46 ±  11.41% classification accuracy for 3 population classification. In another 
studies, Kohnemann et al.4 showed a potential application of a mitochondrial DNA (mtDNA) SNP analysis for 
forensic application, 32 SNPs were detected in a multiplex polymerase chain reaction (PCR) assay and a multi-
plex SNaPshot analysis. In the analysis cases, STR-analysis and sequencing of the mtDNA hyper-variable region 
I (HVR I) failed and the mtDNA SNP analysis was the only way to obtain satisfactory results, even in a case with 
mixed stains. Yet, all these analyses are time-consuming and very expensive, since if we want to ensure the accu-
racy of the classification procedure and obtain a desirable feature subset SNPs with the minimum size and most 
informativeness, the number of SNP must be at least 30–70 in all these analyses1,2,3,4. Nevertheless, when applied 
to appropriate data set, data mining and machine learning techniques can be more effective on feature selection 
and therefore provide excellent classification accuracy. Sushmita Mitra et al.5 had made a positive summary about 
various machine learning techniques, a.k.a. soft computing in bioinformatics. For example, a gene is a long DNA 
sequence so that each gene is much more powerful than a SNP for classification. In light of this difference between 
a gene and a SNP, Lipo Wang et al. had done excellent works6–8, providing effective methods of gene selection and 
finding that just a few genes can give very accurate cancer classification. In particular, they use SVM and Fuzzy 
Neural Network (FNN) to find the minimum gene subset after the step of gene importance ranking6. They find 
2 genes are sufficient to produce high classification accuracy. Another work is based on spectral biclustering to 
find just 2 genes and provide 99.92% classification accuracy for Lymphoma; and just one gene to produce 98.7% 
classification accuracy for liver cancer7. In the other work, they provide effective method for gene selection in 
high dimensional data, such as microarray gene expression data8. Basically, they apply dimensional reduction 
technique first and then apply a voting scheme by utilizing binary SVMs. They found t-test-based gene selection 
is most effective among others. For SRBCT and lymphoma data set, they can use just 6 and 5 genes to give a 100% 
accurate classification. In this report, we adopted the simple extension of the standard likelihood ratio test and 
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performed a standard statistical classification procedure to minimum the number of the SNP and enhance the 
classification accuracy. Those could be applied either in forensics or in disaster control precisely and promptly.

Problem Statement and Classification Procedure
Suppose there are two human populations, A and B, which are in accordance with Hardy-Weinberg equilib-
rium. Populations A and B have different frequencies of SNP genotypes, and there is no linkage disequilibrium 
between SNP sites. Each genotype of a given SNP (i) follows a trinomial distribution with parameters pi, qi, and 
ri (pi +  qi +  ri =  1) in population A and each genotype of the same given SNP (i) follows a trinomial distribution 
with parameters ui, vi, and wi (ui +  vi +  wi =  1) in population B. In particular, if the genotypes of SNP (i) consist 
of the data set {CC, CT, TT}, then a random selected individual from population A has the following properties:

1.	 Prob (genotype of SNP (i) =  CC) =  pi
2.	 Prob (genotype of SNP (i) =  CT) =  qi
3.	 Prob (genotype of SNP (i) =  TT) =  ri

If the individual is from population B, then the following is true:

4.	 Prob (genotype of SNP (i) =  CC) =  ui
5.	 Prob (genotype of SNP (i) =  CT) =  vi
6.	 Prob (genotype of SNP (i) =  TT) =  wi

  When the genotypes of SNP(i) consist of the data set {AA, AG, GG}, the probability statements are the same as 
above except CC, CT, and TT are replaced by AA, AG, and GG, respectively.
Given an individual sample S consisting of n SNP markers, the problem is to determine whether the individual 
comes from population A or B. The likelihood functions of S must be derived.
L(A) =  likelihood function (S is from population A)

7.	 ∏ =
= = =p q ri 1

n
i
I genotype of SNP i CC or AA

i
I genotype of SNP i CT or AG

i
I genotype of SNP i TT or GG( ( ) ) ( ( ) ) ( ( ) )

L(B) =  likelihood function (S is from population B)

8.	 ∏ =
= = =u v wi 1

n
i
I genotype of SNP i CC or AA

i
I genotype of SNP i CT or AG

i
I genotype of SNP i TT or GG( ( ) ) ( ( ) ) ( ( ) )

Where I(.) is the indicator function.
A simple classification procedure can then be defined based on likelihood functions L (A) and L (B):
If L (A)/L (B) >  1, the individual is from population A. Otherwise, the individual is from population B. 

The model we proposed is in a general setting. A population can be any specific group of people and popula-
tion parameters can be estimated from representative samples. For example, in this paper, Population A is the 
group of people lives in a specific geographical region and Population B is the general population. Parameters of 
Population A and B are estimated using representative samples from an epidemic society of Shanghai and NCBI, 
respectively. Such application setting is common for life insurers. For example, to design and price a medical 
insurance contract of a 65-years-old male, actuary needs to analyze two populations: Populations A represents 
65-years-old male specific to the life insurer, due to the company screening process for the policy holders and 
Population B represents all of 65-years-old males. Representative samples of Population A and B then come 
from the internal database of the insurer and public organizations such as National Association of Insurance 
Commissioners (NAIC) or Society of Actuaries (SOA), respectively. The population parameters estimated by 
representative samples may entail some estimation errors. However, as we are entering the era of “Big Data”, the 
representative samples are converging to the true populations.

The algorithm is a simple extension of the standard likelihood ratio test based on Neyman-Pearson lemma9. 
The statistical efficiency depends on the difference between parameters of two populations and the number of 
SNPs used to calculate the likelihood functions. We investigate the empirical efficiency of this algorithm based on 
8 selected SNPs in Section 4. The standard likelihood ratio test assumes the selected individual come from A or B 
population with equal probability. This assumption is suitable for general statistical hypothesis tests. However, if 
the population sizes are known and the individual is a random sample from these two populations, then it would 
be more appropriate to incorporate the population size into consideration. Considering this, the algorithm also 
could be presented as: Suppose there are two populations: population A with size N (A), and population B with 
size N (B). There is a sample with genotype (G). Let’s L(X) be the likelihood function defined in the manuscript. 
Let E (A) =  N (A) ×  L (A). Therefore E (A) is the expected number of samples (with genotype G) found in pop-
ulation A. E (B) is the same for population B. It is then appropriate to use the ratio E (A)/E (B) to determine the 
origin of this sample.

Eight-Marker SNP Sample from a Chinese Population
Based on the information from the Human Genome and International HapMap Projects10, eight SNP markers 
having a high allele mutation frequency (0.249 <  MAF <  0.355), were randomly selected from eight different 
chromosomes, respectively: rs2243191 (1q32), rs2856838 (2q14), rs583911 (3q25), rs2227306 (4q13), rs20541 
(5q31), rs8193036 (6p12), rs4739139 (8q12), and rs741344 (12q15). A sample of 641 was collected from an epi-
demic society of Shanghai. The eight SNPs were selected from HapMap, which was with high allele mutation 
frequency from random selected SNPs in human being. After filtering by minimum allele frequency (MAF), 
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the MAF of the eight SNPs is between 0.249and 0.355, which basically meet the experimental set P ≈  0.333. 
Therefore, we could take advantage of higher equilibrium factor to group the independent classifications. SNPs 
could be picked as randomly, but with higher frequency in species.

All extracted gDNA by MagCore HF-16 (RBC Bioscience) was subjected to quality control using a threshold 
of 260/280 ratio and validated with a final concentration of 10 ng/ul. SNPstream (Beckman Coulter) was used for 
SNP genotyping in this study. Primers were designed and generated using Autoprimer (http://www.autoprimer.
com/). PCR amplification, amplicon purification, DNA hybridization, and data analysis were accomplished using 
an SNP stream automation analyzer.

Haploview provided a summary table for the SNP sample11. The characteristics of these eight SNP markers are 
summarized in Table 1, they are located on different chromosomes. The P-values from Hardy-Weinberg equilib-
rium analysis of each of the markers were all greater than 0.05. This indicates these alleles are in equilibrium12.

This classification procedure is based on the frequencies (0.249 <  MAF <  0.355) of genotypes of SNPs. Their 
frequencies are summarized in Table 2. This population played the role of population A in the classification 
procedure.

Frequencies of SNP markers from the NCBI SNP database
To determine the classification procedure defined in Section 1, we determined the genotype frequencies of the 
SNPs from the NCBI SNP database at http://www.ncbi.nlm.nih.gov/SNP/index.html. The collected information 
is summarized in Table 3. The last row of Table 3 shows the number of individuals used to compute the genotype 
frequencies of each SNP marker. We treated the genotype frequencies of SNP markers as having been from a 
“general” population. This population played the role of population B in the classification procedure.

In our hypothetical situation, the hypothetical suspect “S” comes from population A, it is natural to set the 
general population of Chinese as population B. If there are two suspects, it would be natural to set population A 
& B as their origins, respectively.

Accuracy of the classification procedure
We tested the classification procedure using the frequency data described in Sections 2 and 3. To determine the 
impact of the number of SNP markers on the accuracy of the classification procedure, we set the number of SNP 

Marker Position ObsHET HWpval MAF Allele

rs2243191 01q32 0.406 0.8058 0.276 T:C

rs2856838 02q14 0.379 0.8236 0.249 C:T

rs583911 03q25 0.412 0.2625 0.268 G:A

rs2227306 04q13 0.476 0.3764 0.355 C:T

rs20541 05q31 0.426 0.9762 0.310 C:T

rs8193036 06p12 0.407 0.7335 0.293 C:T

rs4739139 08q12 0.445 0.0505 0.289 C:T

rs741344 12q15 0.465 0.4259 0.340 A:G

Table 1.   Haploview summary.

rs2856838 rs8193036 rs2243191 rs20541 rs2227306 rs4739139 rs741344 rs583911

CC 0.562 0.504 0.073 0.477 0.407 0.488 0.000 0.000

CT 0.379 0.407 0.406 0.426 0.476 0.445 0.000 0.000

TT 0.059 0.089 0.521 0.097 0.117 0.067 0.000 0.000

AA 0.000 0.000 0.000 0.000 0.000 0.000 0.427 0.062

AG 0.000 0.000 0.000 0.000 0.000 0.000 0.465 0.412

GG 0.000 0.000 0.000 0.000 0.000 0.000 0.108 0.526

Table 2.   Frequencies of genotypes of SNP markers in population A.

rs2856838 rs8193036 rs2243191 rs20541 rs2227306 rs4739139 rs741344 rs583911

CC 0.460 0.159 0.480 0.603 0.567 0.733 0.000 0.000

TC 0.399 0.433 0.353 0.331 0.361 0.242 0.000 0.000

TT 0.141 0.409 0.168 0.066 0.072 0.025 0.000 0.000

AA 0.000 0.000 0.000 0.000 0.000 0.000 0.437 0.377

GA 0.000 0.000 0.000 0.000 0.000 0.000 0.425 0.358

GG 0.000 0.000 0.000 0.000 0.000 0.000 0.139 0.264

Count 652 1817 1934 1247 610 554 504 1468

Table 3.   Frequencies of genotypes of SNP markers in population B.

http://www.autoprimer.com/
http://www.autoprimer.com/
http://www.ncbi.nlm.nih.gov/SNP/index.html
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markers n =  2, 4, 6, and 8. The accuracy of the classification depends on the multinomial parameters of the two 
populations, such as population size, the difference between two populations and the selection and number of 
SNPs. It is common to use the power of the test to represent the accuracy of classification. If the parameters of 
the two populations were entirely different, then the likelihood ratio in the algorithm would converge to infinity 
quickly. In such situation, the power of the test is high. In terms of classification accuracy, increasing the numbers 
of SNPs will only increase the power (accuracy). The results are shown in Table 4. It became clear that accuracy 
increased when the number of SNP markers used was increased. when n ≥  8, such as 10–12 ,the accuracy is sat-
urated around 88–90%(data not shown) without increasing significantly. The results indicate that a sample with 
a smaller number of SNP markers can be useful in identifying the population from which a given individual may 
have come.

Discussion
With the human genome project and haplotype-depth research program, SNP genotyping has been applied in 
disease diagnosis, population genetics, pharmacogenomics, and many other fields. The development of restriction 
fragment length polymorphism (RFLP) and short tandem repeat microsatellite markers (STR) have led to wide-
spread use of SNPs in many types of applications.

The most successful application of SNP detection is in the field of forensic genetics, where it is used to evalu-
ate rare, degraded, and even nearly fossilized nucleic acid evidence. It has also been used in the identification of 
human beings, animals, and goods and in the study of race, migration, evolution, lineage, and intellectual prop-
erty issues. FFPE samples from clinics and universities could be used in SNP analysis to decipher genetic markers 
relevant to risk assessment, prognosis, and therapeutic diagnosis13–15. However, SNP is restricted by the fact that 
there are only three possible polymorphisms per residue. The identification power of the number of SNPs is about 
50–70 rather than 13 for STRs16, to core the populatin of the world.

The purpose of this study is to take advantage of the efficiency and simplicity of SNP detection to process 
data from large populations and to reduce the number of SNP targets. STR is restricted by assigned primers and 
restriction enzyme. SNP pools can be easily adjusted based on the frequency and identity of the mutation in ques-
tion. We here propose a statistical algorithm for empirical SNP detection to increase the power of classification 
and to narrow down the factors for criminal screening using this effective method.
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SNP rs2856838 rs2856838 rs2856838 rs2856838

Markers rs8193036 rs8193036 rs8193036 rs8193036

rs2243191 rs2243191 rs2243191

rs20541 rs20541 rs20541

rs2227306 rs2227306

rs4739139 rs4739139

rs741344

rs583911

Accuracy 73.9% 81.7% 83.0% 86.0%

Table 4.   Frequencies of genotypes of SNP markers.
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